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ABSTRACT 
 

Optimizing charging density in tunnel blasting significantly influences excavation 
efficiency, safety, and cost-effectiveness. Traditional blasting practices typically apply 
uniform charging densities across all blast holes, which fail to account for the distinct 
functional requirements of different blasting zones, leading to suboptimal excavation 
results and increased costs. To address this limitation, this study proposes a machine 
learning-based approach to predict optimal charging densities tailored specifically to 
the cut, stoping, lift, and contour zones in tunnel excavation. Blasting design data from 
Korean tunnel projects were analyzed using multiple machine learning algorithms, and 
their predictive performances were comparatively evaluated. SHAP analysis identified 
dominant parameters affecting each zone, including cut method for the cut zone, hole 
spacing for the stoping zone, round length for the lift zone, and rock type for the 
contour zone. The proposed models achieved R² values ranging from 0.78 to 0.97 
across different zones, providing a reliable methodology for enhancing blasting 
efficiency, minimizing environmental impact, and reducing excavation costs. 
 
1. INTRODUCTION 
 

Tunnel blasting design plays a crucial role in determining excavation efficiency, 
safety, environmental impact, and project cost (Kwon 2024). A key parameter in this 
process is charging density (kg/m), which quantifies the amount of explosive per unit 
length of blast hole and is directly used in field charging design. 
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According to Won (2006), uniform charging density was commonly applied to all 
blast holes in past tunnel blasting practices. However, recent approaches increasingly 
apply different charging densities tailored to each blasting zone (Zare 2006). Despite 
this shift, practical designs still rely on qualitatively defined ranges of charging density, 
limiting quantitative precision. 

This study aims to develop more accurate and efficient blasting designs by 
applying machine learning techniques capable of modeling complex, nonlinear 
interactions among geological, geometric, and operational variables that traditional 
empirical methods cannot adequately capture. Specifically, we predict the charging 
density for each zone and identify key factors influencing the design through feature 
importance analysis. Since blasting zones differ significantly in their purpose and 
characteristics, they require distinct charging strategies. The cut zone creates the initial 
free face for subsequent blasting, the stope and lifter zones remove the bulk material, 
while the contour zone defines the final tunnel profile. (Min 2005; Hwang 2002). 

The tunnel face was divided into four zones, namely cut, stope, lifter, and 
contour. Separate predictive models were developed for each, and SHAP (Shapley 
Additive Explanations) analysis was applied to identify key variables influencing 
charging density. 

This approach supports charging strategies tailored to each zone, helping to 
improve blasting performance, reduce environmental impact, enhance construction 
quality, and lower costs. 
 
2. DATA COLLECTION AND PREPROCESSING 

 
This study utilized a comprehensive dataset of 208 tunnel blast rounds collected 

from 18 excavation sites across South Korea, representing diverse geological 
conditions including igneous, sedimentary, and metamorphic rock formations with 
varying strengths and structural characteristics.  

Each entry includes 15 carefully selected input features that characterize the 
physical and operational conditions influencing blasting outcomes, based on 
established blasting theory and field engineering experience.  

The input features are categorized into four groups based on their engineering 
significance. The input features are categorized into four groups based on their 
engineering significance. Geomechanical parameters characterize rock mass 
properties and include Rock Mass Rating (RMR) classified into five ordinal classes 
according to Bieniawski (1973), rock type (igneous, sedimentary, metamorphic), unit 
weight (kN/m³), cohesion (MPa), internal friction angle (degrees), deformation modulus 
(GPa), and Poisson's ratio. Tunnel geometric parameters describe the excavation 
dimensions and include cross-sectional area (m²) and round length (m), which directly 
influence blast volume and energy requirements. Blasting design parameters 
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encompass minimum burden (mm), hole spacing (mm), and the number of charge 
holes per square meter of tunnel face (holes/m²), representing key operational 
variables that control explosive distribution and fragmentation efficiency. 

Categorical variables include explosive type (emulsion, high-performance 
emulsion, or dynamite), cut blasting method, and controlled blasting method for the 
contour zone, which represent strategic choices affecting blasting performance and 
excavation quality. 

These features represent key operational decisions affecting explosive 
distribution and confinement. 
 
3. MACHINE LEARNING APPROACH 
 

The dataset was divided into 80 percent for training and 20 percent for validation. 
Fivefold cross-validation was applied to the training set to ensure robustness and avoid 
overfitting. Numerical features were scaled to a range between zero and one using 
Min-Max normalization. Categorical variables, including rock type, explosive type, and 
blasting methods, were one-hot encoded for model compatibility. 

Eleven algorithms were systematically evaluated, including linear models 
(multiple linear regression, Lasso, Ridge) for baseline comparison and advanced 
nonlinear models (support vector regression, K-nearest neighbors, decision tree, 
random forest, XGBoost, LightGBM, histogram-based gradient boosting, and artificial 
neural networks) to capture complex variable interactions. 

Hyperparameters were optimized using GridSearchCV with predefined 
parameter grids, evaluated based on cross-validated R-squared scores to ensure 
robust model selection and prevent overfitting to the training data. Model performance 
was assessed using coefficient of determination, root mean squared error and mean 
absolute percentage error. 

The best model for each blasting zone was retrained on the full training set and 
evaluated on the held-out validation set. SHAP analysis was performed to interpret 
feature contributions to charging density predictions. 
 
4. RESULTS AND DISCUSSION 

 
In this study, separate machine learning models were developed and evaluated 

for each blasting zone including cut, stoping, lift, and contour. A total of eleven 
regression algorithms were tested using five-fold cross-validation. Random Forest 
demonstrated the best performance in the cut zone (R² = 0.97), likely due to its ability 
to handle categorical variables such as cut method effectively, while XGBoost 
outperformed other models in the stope, lifter, and contour zones (R² = 0.86, 0.93, and 
0.94, respectively), benefiting from its gradient boosting capability to model complex 
variable interactions. 
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Table 1 Cross-validation and final test results of machine learning models for predicting 
charging density in each blasting zone. 
 

Category Cut Zone Stoping Zone Lift Zone Contour Zone 
Best Model RF XGBoost XGBoost XGBoost 

Train R² 0.979 0.999 0.998 0.998 
Train RMSE 0.018 0.002 0.002 0.002 
Train MAPE 2.4 0.3 0.2 0.7 

Test R² 0.876 0.834 0.805 0.799 
Test RMSE 0.043 0.031 0.060 0.023 
Test MAPE 6.0 4.0 6.0 5.0 

Final Test R² 0.966 0.861 0.932 0.938 
Final Test RMSE 0.021 0.041 0.036 0.009 
Final Test MAPE 3.0 5.0 4.0 2.0 

 

     
(a)                                           (b)  

 

     
                      (c)                                          (d) 
 
Fig. 1 Predicted vs. actual charging density for each blasting zone using the selected 
final model. (a) Cut zone; (b) Stoping zone; (c) Lift zone; (d) Contour zone. 
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Table 1 summarizes the cross-validation metrics and final test results for each 
zone-specific model. Fig. 1 shows the comparison between the predicted and actual 
charging densities for each blasting zone using the final selected models. 

Fig. 2 shows the SHAP feature importance for each blasting zone. In the cut 
zone, Cut Method (SHAP value: 0.0619) emerged as the most influential factor, 
reflecting the critical role of cutting strategy in creating effective free faces, followed by 
Rock Type (0.0148), which determines the resistance to fracturing and energy 
requirements.  

For both the stope and lifter zones, Round Length and Hole Spacing were 
dominant factors. In the stope zone, Round Length (0.0572) and Hole Spacing (0.0571) 
showed nearly equal importance, while in the lifter zone, Round Length (0.0947) was 
more influential than Hole Spacing (0.0313), indicating that advance length per round 
significantly affects charging requirements for bulk excavation. 

In the contour zone, the most important features were Number of Charge Holes 
per Unit Area (0.01557) and Explosive Type (0.0085). These results indicate that each 
zone is influenced by distinct variables, emphasizing the need for zone-specific 
charging strategies. 
 

 
(a)                                          (b) 

 

  
(c)                                      (d)  

 
Fig. 2 SHAP feature importance analysis for each blasting zone. (a) Cut zone; (b) 
Stoping zone; (c) Lift zone; (d) Contour zone. 
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5. CONCLUSIONS 
 
This study developed a machine learning-based approach to predict charging density in 
tunnel blasting, customized for the cut, stoping, lift, and contour zones. Based on data 
from 208 tunnel rounds in South Korea, eleven regression algorithms were evaluated. 
Random Forest showed the best performance for the cut zone, while XGBoost was 
optimal for the remaining zones. 
SHAP analysis revealed distinct influential variables for each zone. Cut Method and 
Rock Type were most important in the cut zone; Round Length and Hole Spacing 
dominated in the stoping and lift zones; and the Number of Charge Holes per Unit Area 
and Explosive Type were key for the contour zone. 
These results highlight the effectiveness of zone-specific machine learning models in 
improving charging design. However, the models are trained on Korean geological 
conditions and may require validation for application in different geological settings or 
tunnel construction methods. 
The proposed framework offers a reliable, data-driven method to enhance blasting 
efficiency, control, and cost performance in tunnel excavation. Future work should 
focus on expanding the dataset to include international projects, incorporating real-time 
monitoring data, and developing adaptive models that can update predictions based on 
actual blasting performance feedback.  
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